

A Shift to Renewable Energy

- Renewal of Production Tax Credit in late 2012
- President Obama's climate plan announcement (June, 2013)
- Declining prices making renewable energy more competitive
- IEA: nearly 25% of the world's power will come from renewables by 2018
 - The International Energy Agency said the world's renewable energy capacity will grow 40% to take nearly 25% of the electricity market by 2018
 - By 2016, renewable energy will outdistance natural gas and nuclear
 - Predictable policies and rules needed for the projected growth to happen

Renewable Energy – Current Usage

Who Is Investing?

- Rate regulated utilities
- Non-rate regulated utilities
- Independent renewable energy companies

PHC**13**

Renewable Energy – Current Usage

Why It Is Being Used

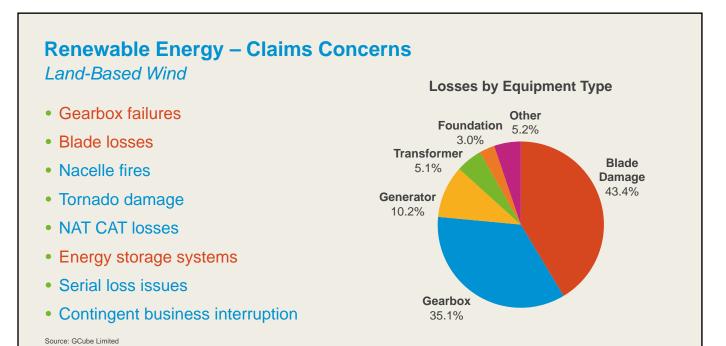
- Diversify fuel mix
- Reduce emissions
- Meet renewable energy portfolio standards
- Make money

Renewable Energy

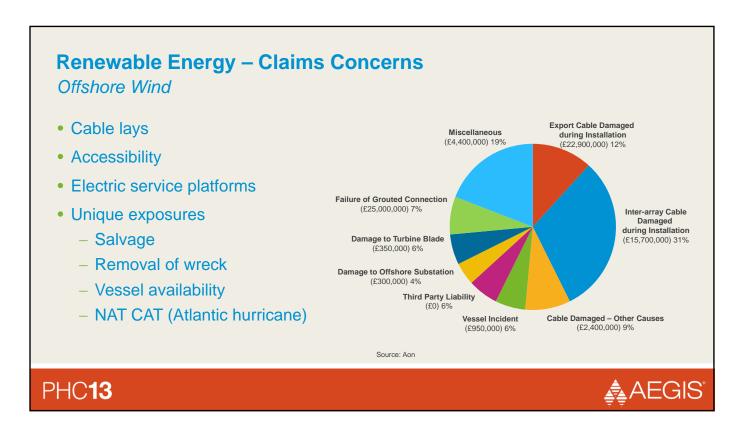
Type of Equipment

- Land-based wind
- Solar photovoltaic (land-based, roof mounted, distributed generation)
- Solar thermal
- Geothermal
- Hydro-electric
- Biomass energy
- Offshore wind

PHC13



Renewable Energy


Insurability of the Equipment

- Wind and solar good
 - Losses are generally higher frequency lower severity (attritional)
 - Many units coming off warranty in 2013
 - Deductibles tend to be lower than fossil fuel plants
 - New emphasis on loss control (AWEA O&M recommended practices)
 - Construction issues v. operational risk issues
- Offshore is next great frontier in the US
 - Markets need to be developed

Renewable Energy – Claims Concerns

Solar

- NAT CAT
 - Named windstorm
 - Earthquake
 - Weight of ice and snow
 - Flash flooding
- Serial losses
- Degradation of performance (performance warranty issues)
- Bankruptcy of OEMs

PHC13

Renewable Energy

Insurance Market Appetite

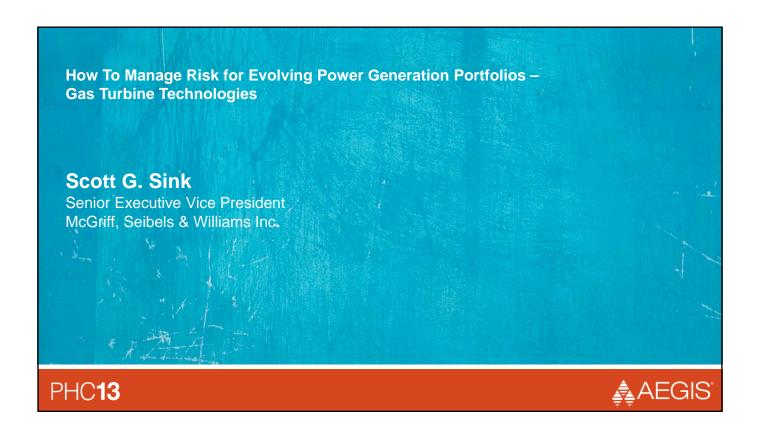
- Robust and competitive
- Specialty lines underwriters compete with more traditional P&U markets
- Other stock companies have renewable energy practices
- PD and BI deductibles are generally lower
 - Lender requirements
 - Contractual requirements
- Increased use of captives for deductible buy-downs or creativity for NAT CAT

Renewable Energy

Program Structures

- Frequently included within holding company master programs
- Investigate splitting programs to access competitive pricing / terms
- Stand-alone programs can be completed with a single underwriter
 - Loss limit
 - TIV limit
 - NAT CAT may be an issue, depending on geography of risk / contracts

PHC13

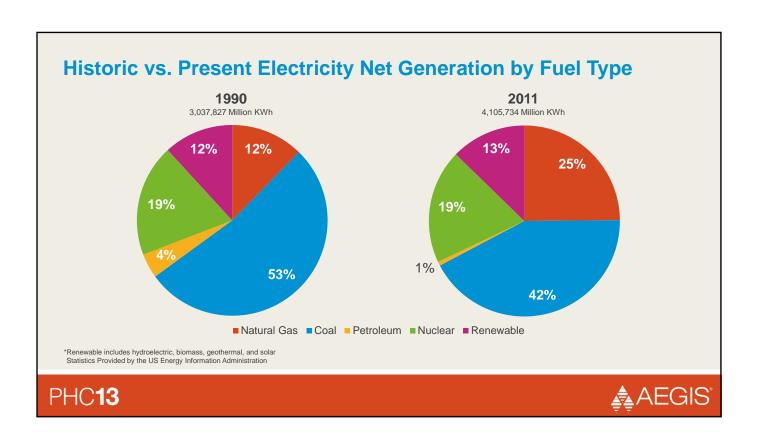


Renewable Energy

Where Is Technology Going

- Components and projects will increase in size
- Older, less efficient projects will be modernized
- Storage technologies (batteries / flywheel) will evolve
- Direct drive wind turbines.
- Offshore wind is the next great US frontier

Rise of Natural Gas In America


- From 1990 to 2011, 77% of all added generating capacity were natural gas-fired power plants
- In 2012, natural gas prices were low enough for a few months for power companies to run natural gas-fired generation plants more economically than coal plants
- During those months, coal and natural gas were nearly tied in providing the largest share of total electricity generation, something that has never happened before

Factors Contributing to Natural Gas Growth

- Gains in natural gas production primarily from domestic shale formations
- Expansion of the natural gas pipeline network, which reduces the uncertainty about availability of natural gas
- Increased efficiency and dependability of natural gas-fired power plants
- Rising costs and uncertainties around both coal and nuclear power generation

New Gas Turbine Technologies

- GE 7FA .05
- Siemens SGT6-5000F5
- Siemens SGT6-8000H
- Mitsubishi 501GAC and 501J

Mitsubishi 501GAC

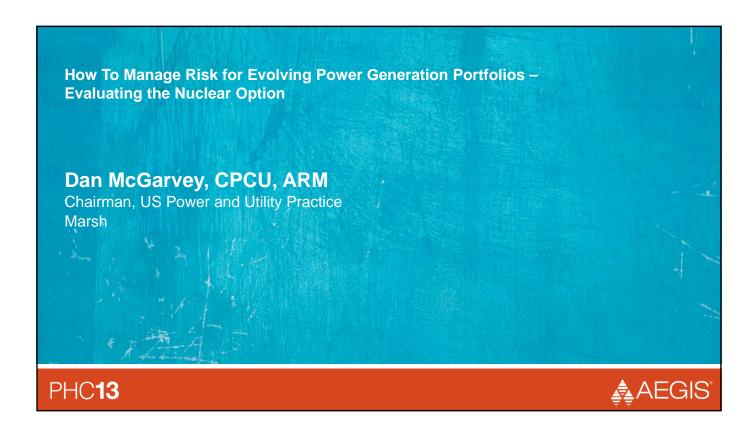
GE 7FA .05

Siemens SGT6-8000H

PHC13

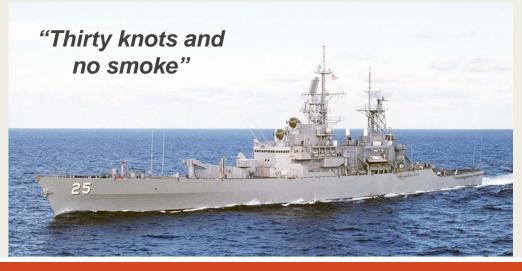
Insurance Issues / Considerations

- Quality of underwriting submission
- Potential for enhanced warranties
- Design cover / defects exclusion
- Prototypical vs. proven technology
- OEM service agreements (LTSA's)
 - Generally viewed favorably by insurers
- Deductibles
 - Property damage \$1 million to \$1.5 million
 - Time element 60-90 days



Gas Turbine Technology

Claims Trends


- Increasing frequency on base losses less than \$15 million (transformers, rotating equipment, maintenance, human error)
- Still probably 20 30 compressor failures per year
- Failure of safety protocols and controls (operator error, turbine vibration monitoring, etc.)
- Emerging issues new GT technology will insurers end up paying for R&D?

Nuclear Power – <u>The</u> Green Option

USS Bainbridge (CGN-25)

PHC**13**

This Uranium Fuel Pellet Generates the Energy of

One Ton of Coal or 17,000 Cubic Feet of Natural Gas

PHC**13**

AEGIS°

The Generation III Reactor

- Achieves "passive safety" through
 - Natural circulation
 - Stored energy
 - Gravity flow
- Constructed with thirty percent fewer components than previous designs
- Requires fewer maintenance outages than predecessors
- Constructed in modules
- Designed for a sixty-year generating life

PHC**13**

New Construction Options

Designs Submitted for US Regulatory Review

Design	MWe	Designer	Туре	Sample Site
AP-1000	1,150	Westinghouse	PWR	Four under construction – Southern Company (Vogtle 3 & 4) and SCANA (Summer 2 & 3)
ABWR	1,350	General Electric / Hitachi	BWR	South Texas Nuclear Operating Company – South Texas 3 & 4
ESBWR	1,500	General Electric	BWR	Detroit Edison – Fermi 3
EPR	1,600	AREVA	PWR	PP&L – Bell Bend site (greenfield project)
APWR	1,700	Mitsubishi Heavy Industries	PWR	Luminant Generation Company, LLC – Comanche Peak 3 and 4

Nuclear New Construction

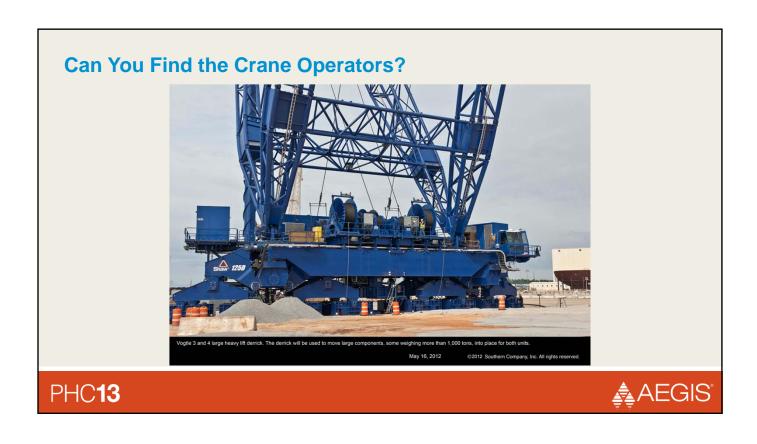
Advantages

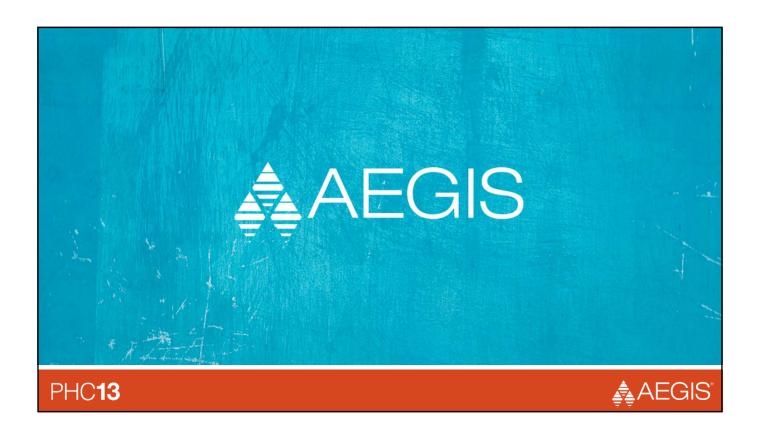
- A carbon-free option for baseload power
- Sixty-year design life
- Traditionally high capacity factor
- Fuel plentiful and located in global regions friendly to the US
- An extraordinary degree of safety

PHC**13**

It is eleven times more likely for a large asteroid to strike the earth during the next 100 years than it is for an ESBWR design reactor to suffer an accident that results in fission product release

Source: GE


Nuclear New Construction


Challenges

- Substantial approval time and cost with regulatory delays possible
- Potential local opposition
- Very large investment "many eggs in a basket" low current cost of natural gas is challenging the economics of nuclear power
- Long-term used fuel storage solution not developed
- Insurance cost or availability does not present a challenge

